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Abstract
Zone-centre transverse optical phonon frequencies νTO(p) of hcp Zn as a
function of hydrostatic pressure p have been calculated using the full-potential
augmented-plane-wave plus local orbitals first-principles method with the
generalized gradient approximation and compared with Raman measurements
of frequencies under pressure. The oscillatory behaviour of νTO(p) found in
the pressure range of the anomalies of hcp Zn supports our previous work
on Zn, where such effects were shown both in the structural parameters and
strongly in the elastic constant c44(p). By integrating the equation of motion
using the exact potential and the zero-point and temperature excitations of the
Raman active modes we show substantial anharmonic effects which make the
frequency of one TO mode the order of 5% below the frequency of the other
mode; this split is a large part of the observed line widths.

1. Introduction

The combination of the diamond anvil cell, intense laser light sources and highly sensitive
radiation detectors has in recent years made possible Raman line measurements in reflected
radiation from a specimen under pressure that provide information about lattice vibration in
crystals under high pressure. Crystals with more than one atom in the primitive unit cell,such as
hexagonal close-packed (hcp) and diamond structures, have optical-mode vibrations in which
atoms in the cell move strongly relative to each other and are Raman active. Such activity
depends on variation of the polarizability of the unit cell as the electron distribution changes
at the vibration frequency of a particular mode. The frequency of vibration thus modulates
the frequency of the incident radiation and produces the sum and difference frequencies of
the Raman effect in the reflected radiation. In a one-phonon scattering event in the bulk of
the crystal conservation of energy and momentum require that the phonon wavevector be very
small, i.e., only zone-centre phonons contribute to the Raman measurement. The symmetry of
the hcp structure then restricts Raman activity to the doubly degenerate zone-centre vibration
in which alternate hexagonal layers slide on adjacent layers. The energy change in this motion
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is the energy of an internal strain. Olijnyk and Jephcoat, in a review of Raman measurements
on hcp metals under pressure [1], list a dozen hcp metals in which Raman measurements have
been made since 1992.

In a few metals first-principles calculations as a function of pressure of the Raman-
active Brillouin zone-centre (� point) transverse optical (TO) mode frequency (νTO(p)) have
been made, including Zn, Mg and Zr. In most cases the calculated frequency follows the
experimental values as a function of pressure, but is 5–10% less than experiment and possibly
as much as 20% lower when the increase in frequency in going from room temperature
measurements to zero temperature values is taken into account.

This paper recalculates the TO mode frequency of hcp Zn as a function of pressure at the
� point to take advantage of the greater accuracy in determining equilibrium structure under
pressure in our paper on anomalies in the structure and elastic properties of hcp Zn under
pressure [2]. Here we show that the anomalies are also present in νTO(p). In addition, we
show that there is a large anharmonicity in one mode of the doubly degenerate TO vibration,
which spreads the TO mode frequencies.

In our paper on anomalies in Zn [2] we have found the equilibrium structure of hcp Zn
under pressure p by a first-principles procedure that differs from the usual one, such as [3]
and [4] used for hcp Zn. We found equilibrium structural parameters a, c and energies E from
the minima of the Gibbs free energy G = E + pV (at 0 K) at p and volume V as a function of
structure, i.e., of a and c, whereas the usual procedure [3, 4] finds equilibrium from minima
of E(c/a) at constant V . From the minima of E at several V , the pressure p is then obtained
by differentiating Emin(V ) with respect to V .

We give reasons in [2] why we believe our equilibrium structures are more accurate than
those found by the usual procedure. Not only do we find structural anomalies in Zn and Cd
that agree well with experiment, but we also calculate elastic quantities like c44(p) which show
strong oscillations in the pressure range of the anomalies.

Here we make a further test of our accuracy by using the equilibrium state at each p to
calculate the zone-centre transverse optical mode frequency νTO(p) of hcp Zn. This frequency
has been measured optically at pressures in the anomalous range of p as a Raman line [5].
Contrary to the previous discussion of theory and experiment in [5],we find definite oscillations
in νTO(p) in the pressure range of the anomalies. In addition we use our values of c44(p) to
make a quantitative test of an empirical formula relating νTO and c44 [5, 6] and show that it is
rather poor for hcp Zn.

We also study the anharmonic content of the Raman-active mode by integrating the
equation of motion of the transverse optic mode in the exact potential controlling the motion.
The potential contains all anharmonic contributions, which are shown to be large (at 300 K)
for one direction of vibration and negligible for the orthogonal direction. The split in the two
frequencies due to the anharmonic part of the potential is shown to be a substantial part of the
observed line widths as functions of p.

The procedures are described in section 2, the results are given in section 3 and discussion
of the results in section 4.

2. Procedures

First-principles calculations on hcp Zn under hydrostatic pressure were performed using the
full-potential augmented-plane-wave plus local orbitals (APW + lo) method together with the
Perdew–Burke–Ernzerhof generalized-gradient-approximation (PBE-GGA) as implemented
in the WIEN2k package [7]. The APW + lo method expands the Kohn–Sham orbitals in
atomic-like orbitals inside the atomic spheres and plane waves in the interstitial region. A
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Figure 1. The base of an hcp unit cell with γ = 60◦ rotated 15◦ about the c (or x3) axis so that
the basal rhombus is oriented symmetrically with respect to the orthogonal axes x1 and x2. The
equilibrium position of the second atom in the unit cell is projected on the base.

plane-wave cutoff RMT Kmax = 7, RMT = 1.6 au, Gmax = 14 and mixer = 0.05 were used in
all the calculations; 5300 k-points in the irreducible Brillouin zone were used in the calculations
of the Gibbs free energy along the epitaxial Bain path (GEBP) and in the calculation of the elastic
constants. The k-space integration was done by the modified tetrahedron method. Tests with
larger basis sets and different Brillouin zone samplings yielded only very small changes in the
results. The convergence criterion on the energies is set at 1 × 10−3 mRyd (10−6 Ryd) per
atom.

The procedures for calculating the pressure dependence of νTO(p) are as follows.
(1) Calculate GEBP to find the equilibrium lattice parameters and elastic constants as

functions of pressure. The details of the procedure for finding the equilibrium states and the
elastic constants of the hcp lattice are given in our previous reports [2, 8–11]. Briefly, the
equilibrium state is found from the thermodynamic result that at a given pressure p the Gibbs
free energy (at zero temperature) G ≡ E(a, c) + pV (a, c) is a minimum with respect to both
the hcp structure parameters a and c, where E is the energy/atom and V the volume/atom. The
double minimum is conveniently found from a minimum of GEBP, where the EBP is adapted
to finite pressure. The elastic constants are then found as second strain derivatives of G in the
equilibrium state at p, while p remains constant. This procedure finds the structural parameters
and elastic constants directly as functions of p.

(2) Calculate the vibrational potential δE versus displacements δd of the second atom in
the unit cell from the equilibrium structure at given pressures. Figure 1 shows the projected
hcp unit cell used for δE versus δd calculations (the three-dimensional unit cell is given in
our previous report [8]). In a conventional two-atom hcp unit cell α = β = 90◦, γ = 120◦,
a = b and the two atoms are located at (0, 0, 0) and (2/3, 1/3, 1/2) respectively with vector
components along and in units of the lengths of the lattice vectors (�a, �b, �c).

To calculate δE versus δd it is more convenient to use an unconventional two-atom hcp
unit cell with γ = 60◦ and to rotate the unit cell by 15◦ about the c (x3) axis, so as to have the
basal rhombus symmetrically oriented with respect to the orthogonal axes x1 and x2, as shown
in figure 1. This orientation makes the internal relaxation (for the relaxed elastic constant
calculation) one dimensional for strains that preserve the reflection symmetry of the bisecting
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Figure 2. (a) δE versus δd in and (b) δE versus δdp curves at p = 100 kbar. The solid curves denote
the full potential, the dashed curves denote the harmonic part of the potential and the horizontal
dotted lines correspond to δE = kBT with T = 300 K at p = 100 kbar.

plane. (Note that the elastic constants are independent of the orientation of the x1 and x2 axes
due to sixfold symmetry.) Then the position of the second atom in the equilibrium state is
(1/3, 1/3, 1/2). Two directions of δd designated δd in and δdp are considered, as shown in
figure 1, and both of them are in atomic units. The position of the second atom with δd in is(

1
3 + δd in√

3a
, 1

3 + δd in√
3a

, 1
2

)
while with δdp the position is

(
1
3 + δdp

a , 1
3 − δdp

a , 1
2

)
. Both δd in and δdp

are perpendicular to the c-axis corresponding to the displacements in the TO mode. The value
of a = 4.91 au shown in figure 1 is the equilibrium lattice parameter of the base of the unit
cell at p = 100 kbar obtained from the GEBP calculations. The values of δd in and δdp shown
in figure 1 are the magnitudes of the vibrations corresponding to δE = kBT with T = 300 K
at p = 100 kbar.

Figures 2(a) and (b) show δE versus δd in and δE versus δdp curves respectively at
p = 100 kbar. The solid curves represent the full potential, the dashed curves represent
the harmonic part of the potential and the horizontal dotted lines correspond to δE = kBT
with T = 300 K at p = 100 kbar. Such calculations are repeated at different pressures from
0 to 200 kbar in order to obtain the pressure dependence of νTO(p).

(3) Calculate νTO(p) from the full δE versus δd curves by integration over the full potential
(Simpson’s rule with 999 points). For convenience in writing equations let E and x represent
δE and δd respectively. The equation of motion of the vibration is

ẍ = − 1

m

∂ E

∂x
, (1)
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where m = MZn/2 is the reduced mass of the atom and MZn is the atomic mass of Zn.
Equation (1) can be integrated and the solution over the full orbit gives the period of the
vibration as

T = 2
∫ xmax 2

xmax 1

dx
[

2
m (E(xmax) − E(x))

]1/2 , (2)

where E(xmax) = E(xmax 1) = E(xmax 2) = kBT with T = 300 K, and xmax 1 is negative while
xmax 2 is positive.

The integral is singular but integrable: expand the function E(x) around xmax (which
represents either xmax 1 or xmax 2),

E(x) = E(xmax) + A(x − xmax) + f (x), (3)

where |x | < |xmax| and f (x) has higher powers of (x − xmax). Then the singularity can be
subtracted out and integrated analytically:

∫ xmax

x

dx

[E(xmax) − E(x)]1/2
=

∫ xmax

x
g(x) dx + 2

(
xmax − x

A

) 1
2

, (4)

where

g(x) ≡ 1

[E(xmax) − E(x)]1/2
− 1

[A(xmax − x)]1/2
, (5)

and g(x) can be integrated numerically. This procedure is used just for small intervals near
xmax.

(4) Calculate νTO(p) from c44 using the empirical relation (6) given in [5, 6].

νTO = 1

π

√√
3a2c44

Mc
. (6)

In (6) a and c are the lattice constants, and M is the atomic mass. The elastic constant c44 of
hcp Zn as a function of pressure has been calculated using the procedures given in our previous
reports [2, 9]. The relation (6) can then be tested quantitatively for hcp Zn.

3. Results

Figures 3 shows the zone-centre TO mode frequencyνTO(p) as a function of pressure. The open
diamonds in figures 3(a) and (b) are the experimental data measured by Raman spectroscopy
at room temperature from [5]. The open circles in figures 3(a) and (b) are the calculated
frequency–pressure data at zero temperature found in a previous calculation using the ‘frozen-
phonon’ method, also from [5]. The solid circles and solid squares in figures 3(a) are calculated
from the numerical integration of the δE versus δd in curves of the full and harmonic potentials
respectively. The solid triangles in figures 3(a) are obtained from the integration of the δE
versus δdp curves. For the vibration perpendicular to the bisecting plane both the full and
harmonic potentials give the same frequency at each given pressure up to δE at 300 K.

Figure 4 demonstrates the oscillatory behaviour of νTO(p) in the pressure range of the
anomalies of hcp Zn. All the data (except the δd in harmonic data) shown in figure 3 are re-
plotted in figure 4 with expanded scales along with the data (open triangles) calculated from
the relaxed c44 using (6). Measurement of νTO(p) for Cd would be particularly interesting
because the anomalies in Cd are greater than in Zn [2].

The open circles in figure 5 are the experimental line widths of the Raman spectra of
the TO mode of hcp Zn as a function of pressure [5]. The solid dels denote the frequency
difference between the solid circles and the solid squares in figure 3(a), which are calculated
from the δE versus δd in curves of the full and harmonic potentials respectively.
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Figure 3. Zone-centre TO mode frequency as a function of pressure. The open diamonds and open
circles in (a) and (b) are the experimental and theoretical data from [5]. The solid circles and solid
squares in (a) are calculated from the δE versus δd in curves of the full and harmonic potentials
respectively. The solid triangles in (b) are obtained from the δE versus δdp curves. In both (a) and
(b) the solid curves interpolate between the data points.

4. Discussion

The oscillation in νTO(p) shown in figures 3 and 4 supports our belief that our procedure for
finding equilibrium at a given p is more accurate than the usual procedure based on minima
of E(c/a) at constant V . The previous theoretical result in [5] was interpreted as a smooth
curve in figure 2 of [5], although some irregularity is shown in figure 3 of [5]. Here we show
clearly visible oscillations of νTO at 145, 125, 105 and 95 kbar which are present in both the
full potential and harmonic part of the potential for the in-plane displacement δd in. Somewhat
different oscillations appear at 140, 120 and 110 kbar for the out-of-plane displacement δdp,
which is entirely harmonic. The experimental data show some anomalies at 140 kbar, and
possibly at 110 and 95 kbar. Comparison with the original data, which are not tabulated in [5],
might verify the possible anomalies which are suggested by the theoretical results.

The full potential shown in figure 2(a) for the in-plane displacement δd in shows a
substantial asymmetry, which is due to dependence of the full potential on (δd in)3 terms in the
expansion around equilibrium. Such terms are forbidden in the potential for δdp in figure 2(b)
since the plane bisecting the 60◦ vertex angle in figure 1 is a plane of reflection symmetry for
δdp; the fourth-order terms in δdp are negligible at δE = 2 mRyd corresponding to the phonon
energy at 300 K.

The comparison of calculated νTO(p) with values calculated with the empirical formula (6)
using calculated c44(p) values in figure 4 shows poor correspondence. The formula (6) values
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Figure 4. Oscillatory behaviour of the TO mode frequencies in the pressure range of the anomalies
of hcp Zn. The open triangles are calculated from the relaxed c44 using (6). All other data are the
same as in figure 3 but with a smaller pressure range. The solid curves interpolate between the data
points.

Figure 5. The open circles are the experimental line widths of the Raman spectra versus pressure
from [5]. The solid dels are the frequency differences between νTO (δd in harmonic) and νTO

(δd in full potential 300 K) as a function of pressure. The solid and dashed curves interpolate
between the data points.

are high by ∼30% and the anomalous oscillations are much stronger than in the first-principles
νTO(p). The comparison uses relaxed values of c44; use of unrelaxed values, which are larger,
would increase the discrepancy.

The anharmonic content of E(δd in), which lowers the full-potential frequencies by ∼5%,
produces a spread of frequencies from νTO obtained with δdp to νTO obtained with δd in. The
spread of frequencies is shown in figure 5 to be a substantial part of the observed line widths
plotted in figure 5. The downward trend of the calculated frequency spread from 60 to 140 kbar
also seems to correspond to the experimental line-width values.



2128 S L Qiu et al

Acknowledgments

The calculations were carried out using the computational resources BOCA4 Beowulf at
Charles E Schmidt College of Science, Florida Atlantic University. P M Marcus thanks IBM
for providing facilities as an Emeritus member of the Thomas J Watson Research Center.

References

[1] Olijnyk H and Jephcoat A P 2002 Metall. Mater. Trans. A 33 743
[2] Qiu S L, Apostol F and Marcus P M 2004 J. Phys.: Condens. Matter 16 6405
[3] Neumann G-S, Stixrude L and Cohen R E 2001 Phys. Rev. B 63 054103
[4] Novikov D L, Freeman A J, Christensen N E, Svane A and Rodriguez C O 1997 Phys. Rev. B 56 7206
[5] Olijnyk H, Jephcoat A P, Novikov D L and Christensen N E 2000 Phys. Rev. 62 5508
[6] Olijnyk H and Jephcoat A P 2002 High Pressure Res. 22 43
[7] Blaha P, Schwarz K, Madsen Kvasnicka G D and Luitz J 2001 WIEN2k, An augmented Plane Wave +

Local Orbitals Program for calculating Crystal Properties (Karlheinz Schwarz, Technical Universität Wien,
Austria) ISBN 3-9501031-1-2

Blaha P, Schwarz K and Sorantin P 1990 Comput. Phys. Commun. 59 399
[8] Qiu S L and Marcus P M 2003 Phys. Rev. B 68 054103
[9] Qiu S L and Marcus P M 2003 J. Phys.: Condens. Matter 15 L755

[10] Marcus P M, Ma H and Qiu S L 2002 J. Phys.: Condens. Matter 14 L525
[11] Marcus P M and Qiu S L 2004 J. Phys.: Condens. Matter 16 8787


